Показ дописів із міткою Математика. Показати всі дописи
Показ дописів із міткою Математика. Показати всі дописи

четвер, 26 листопада 2015 р.

Послідовність Фібоначчі

Послідовність Фібоначчі, Золотий перетин, теорема Піфагора, спіраль Архімеда та ...

Послідовність Фібоначчі таЗолотий перетин

Послідовність Фібоначчі, популяризована книгою та фільмом "Код Да Вінчі" - ряд цифр, описаний у вигляді загадки італійським математиком Леонардо Пізанським, більш відомим під прізвиськом Фібоначчі, в XIII столітті.

Коротко сутність загадки:
Хтось помістив пару кроликів в якомусь замкнутому просторі, щоб дізнатися, скільки пар кроликів народиться при цьому протягом року. Природа кроликів така, що кожен місяць пара кроликів приводить на світ іншу пару, а здатність до народження потомства у них з'являється після досягнення двомісячного віку.
У підсумку виходить такий ряд цифр:

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144,

де через кому вказано кількість пар кроликів в кожному з дванадцяти місяців. Його можна продовжувати нескінченно довго, оскільки  кожне наступне число є сумою двох попередніх.


У цьому ряді є декілька математичних особливостей.  

субота, 19 вересня 2015 р.

Комплексні числа

Комплексні числа

У багатьох розділах математики та її застосуваннях неможливо 
обмежитись розглядом лише дійсних чисел. 
Вже досить давно під час розв’язування різних задач виникла потреба добувати 
квадратний корінь з від’ємних чисел. 
Щоб ця дія стала можливою, ввели множину нових чисел.
 

Означення комплексного числа і уявної одиниці


Число a+bi, де a і b — будь-які дійсні числа, i — уявна одиниця, називається комплексним числом (a — дійсна частина, bi — уявна частина комплексного числа, а b — коефіцієнт при уявній частині).
Число, квадрат якого дорівнює 1, позначають буквою i і називають уявною одиницею (i — перша буква латинського слова imaginarius — уявний).

Тобто, для символу i виконується рівність
ii=i2=1.
Запис a+bi називають алгебраїчною формою комплексного числа.
Примітка! Слово «комплексний» означає складений.
Часто комплексне число позначають буквою z і записують z=a+bi.

Множина дійсних чисел є частиною (підмножиною) множини комплексних чисел.

Для комплексних чисел означені алгебраїчні операції додавання та множення, які узагальнюють додавання та множення дійсних чисел із зберіганням властивостей асоціативності, комутативності та дистрибутивності.

Які комплексні числа називаються рівними, спряженими, протилежними?

Два комплексних числа a+bi і c+di рівні між собою тоді і тільки тоді, коли a=c і b=d, тобто, коли рівні їх дійсні частини і коефіцієнти при уявних частинах.

вівторок, 8 вересня 2015 р.

Вектор

Варто знати

Вектор — це величина, яка характеризується числовим значенням і напрямком.
Під направленим відрізком AB розуміють впорядковану пару точок, перша з яких — точка A — називається його початком, а друга — B — його кінцем. В геометрії розглядають вектори, що не залежать від точки прикладання (вільні вектори).

Вектори позначають двома способами:

  • малими буквами латинського алфавіту (наприклад, a⃗ );
  • двома великими буквами латинського алфавіту (наприклад, AB), де перша буква — початок вектора, а друга — кінець.
Графічно вектори зображають у вигляді направлених відрізків певної довжини AB.


Рис. 1. Вектор AB з початком в A і кінцем в B.

понеділок, 19 серпня 2013 р.

Повторюємо математику

Повторюємо математику - готуємося до навчання
Скоро 1 вересня

  Математика: виділяємо повний квадрат (для тих, хто не дружить з похідною). Вміння робити дані математичні перетворення особливо цінні при розв'язуванні задач з фізики на дослідження максимуму та мінімуму.



вівторок, 20 листопада 2012 р.

Формули наближених розрахунків


Вміло використовуємо математику при розв’язуванні задач з фізики.



При розв’язуванні багатьох задач з фізики з метою швидшого отримання кінцевого результату слід використовувати найпростіші формули наближених розрахунків. Ці формули базуються на наступному твердженні:


для довільних дійсних чисел к та дійсних х, що │х│< 1 справедливою є рівність:
(1 + x)к = 1 + k∙x/1 + k(k – 1)∙x2/1·2 + ∙∙∙


У випадку, коли │х│‹ 1, а к є порядку одиниці, то в безмежній сумі можна обмежитись лише двома першими складовими, тобто знехтувати доданками, котрі містять х2, х3, …, як безмежно малими величинами.

Тоді
(1 + х)к ≈ 1 + кх , при х << 1.

Справедливими є наступні формули наближених розрахунків:

(1 + х)2 ≈ 1 + 2х
(1 – х)2 ≈ 1 – 2х
(1 + х)-1 ≈ 1 – х
(1 – х)-1 ≈ 1 + х
(1 + х)1/2 ≈ 1 + х/2
(1 – х)1/2 ≈ 1 – х/2
е  ≈ 1 + х
е  ≈ 1 – х
ln(1 + x) ≈ +x
ln(1 – x) ≈ -x
                             sinxtgxx,          х < 0,077 рад (4,4º)
cosx ≈ 1 – x2/2

субота, 21 січня 2012 р.

Дивовижні криві

Математичні криві у фізиці

Поговоримо про найпростіші криві, котрі часто зустрічаються при вивченні шкільного курсу фізики.

Пряма та коло.
Найбільш простими є пряма та коло, котрі, поза сумнівом, є найбільш вивченими. Найдивовижнішим для цих ліній є те, що пряма є частковим випадком кола великого радіуса.

Еліпс.
Мал. 1
Розглянемо криву, котру описує точка М так, що сума відстаней цієї точки до двох нерухомих точок F1, F2  є незмінною (мал.1). Отриману криву називають еліпсом. 

Для еліпса є справедливим (мал. 2):
F1, F2  - фокуси еліпса,
F1М + F2М = А1А2 = const, де М – довільна точка еліпса,
В1, В2, А1, А2 – вершини еліпса,
А1F2 + A2F2 = А1А2 – велика піввісь еліпса,
В1В2 – мала піввісь еліпса.


Будуємо еліпс


 
Мал. 2
Еліпси зустрічаємо в природі та побуті.

1. Якщо у фокусі еліпса розмістити джерело світла, а сам еліпс виготовити з добре відполірованої поверхні металу, то промені, відбившись від цієї поверхні зберуться в другому фокусі (мал. 3).

Мал. 3

Related Posts Plugin for WordPress, Blogger...